The exponential function -

Part

Introduction 1.

As the United States celebrates its Bicentennial Year, we can look
back at the unparaileled accomplishments of the men and women who
have built this country. If any one theme runs through all of our
200-year history, it is growth. Our population, our industries, and our
consumption of resources have all grown enormously, and are
continuing to grow. Our magazines are filled with advertisements that
praise our nation’s growth,

“Every school child knows that the Revolution was a
struggle for freedom. What is often overlooked is that one of the
basie liberties for which the Colonies fought was the freedom of
enterprise — the freedom to develop without economic
constraints imposed by England.

In the two hundred years of America’s growth, freedom of
enterprise has been tightly interwoven with our other basic
freedoms. It has provided a unique climate for invention, for
innovation, and for competition that has allowed our people to
achieve an unparalleled living standard. In short, it was and is the
most effective, efficient economic system ever devised.

Now, at this special time in our history, Americans should
remember that our freedoms are inseparable. Freedom of
enterprise is essential to our economic growth and well-being to
create more and better jobs, more energy, more security, and the
capital that they demand.”

While the advertising agencies continue to pour forth unparalleled
calls for more growth, a few thoughtful people are beginning to ask,
“Can we continue in the future to grow as we have grown in the past?”
The answer to this vital question can be found in the mathematics of
the exponential function. The mathematics of growth is the
mathematics of the exponential function.

Growth is one of the great cornerstones of most business and
economic systems, The idea that “growth is good” is an item of faith
with most Americans. This belief seems to be deeply rooted in the
American frontier version of our western European cultural heritage; on
the one side, few people ever examine the rational or logical bases for
items of faith, and on the other side, I suspect that mathematics and
physics teachers who introduce natural logarithms and exponential
functions usually illustrate these functions with examples of radioactive
or RC decay. In introductory physics we seldom mention examples of
exponential growth, although many such processes dominate our
everyday life.
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In this series of articles we will first review the very
simple mathematics of the exponential function, and we
will cite a number of examples which demonstrate the
importance of the function in the real world. These will let
us draw some very significant conclusions about our future,
about our nation’s third century, about our political leaders
and about life on “‘spaceship earth.”

If we understand the fundamental arithmetic of
growth we will then be able to evaluate many of the
conflicting statements that are made almost daily by
“experts” and by persons in authority who are reporting on
trends or who are making predictions about the future
growth of segments of our economy. Few, if any, of these
people appear to understand the arithmetic of growth, and
unfortunately few Americans have the background that is
needed to evaluate these predictions. As a result the
predictions go unchallenged. Physics students and teachers
have a great responsibility,

1. to understand the problems and perils of growth, and
then
2. to alert the public to these problems and perils, even
if this means taking issue with the “experts.”
The best decisions are those made by an enlightened public.
It is our task as students and teachers to help roll away the
darkness.
Here is the theme of our presentation:

The greatest shortcoming of the human race
is man’s inability to understand
the exponential function.

II. The equation

Exponential growth or decay is a consequence that
follows whenever we have a function N which changes with
time in such a way that the change AN in N during a short
time interval At is proportional to N and to At.

The time rate of change of the quantity is
proportional to the quantity. The larger the value of N the
faster it changes.

The meaning of the constant of proportionality k
can be seen by rearranging Eq. (II-1)

_(AN/N)

k=%

(11-3)

The constant & is then the fractional change (AN/N) in N
per unit time At. The dimensions of k are (time). If £ had
the value “+0.060 per year” it would mean that N was
increasing (+) at a rate corresponding to 6% per year. If 2
had the value ““-0.050 per day” it would mean that N was
decreasing ( —) at a rate corresponding to 5% per day.

I11. The function

Equation (II-2) is a differential equation which can be
solved in several ways. One way is to ask “What kind of
mathematical function has the property that its rate of
change is proportional to itself?”” When the function N is
plotted against the time, ¢, Eq. (II-2) requires a
proportional relationship between the slope (AN/At) and
N. Let’s examine the graphs and slopes of some simple
mathematical functions. (See Fig. III-1.)

If N = kt, a linear function, the slope of its graph is a
constant: AN/At=k. Evidently the slope is not pro-
portional to N,

If N = kt?, a quadratic function, the slope of its graph
is proportional to the first power of time: AN/At = 2k¢.
Consequently the slope is not proportional to N, which is
proportional to ¢2.

If N=F sin w ¢, the sinusoidal function, the slope of
its graph is proportional to cos w t: AN/At = wk cos w t.
The slope of a sine curve at any point is not proportional to
the value of the sine function at that point.

Now let’s examine the properties of the function

AN = kNAt (1I-1) Kt
N=Nya {I11-1)
Rearranging this equation, we get:
AN where a is a constant. Figure III-2 shows a plot of N vs ¢ for
ar kN (II-2) No =1, and for £ = 1 per second. We are thus plotting
N=a' (111-2)
Fig. III-1. N=ht N =rkt? N =k sin wt
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Fig. I1I-2. The function N = Ny a¥? is plotted as a function
of time for various values of a for the case where Ny =1
and k = 1.

for six different values of a in the range from a = 1.0 to
a = 3.5. For any value of g, the slope of the graph of N = gt
at any point is proportional to the value of N at that point.
This is the function that we are seeking.

For what value of ¢ is the slope of the function
equal to the value of the function? [ This is required by Eq.
(II-2) when & has the value of unity.] In Fig. III-3 is
plotted the slope of the curves of Fig. III-2 evaluated at
t=0. At =0 the function N has the value 1.000. .. The
slope at ¢ = 0 will be equal to the function (that is the slope
has the value 1.00...) when a has the value of
approximately 2.7. For ¢ = 2.7 the slope of the function is

proportional to the function, and the constant of
proportionality is unity. Thus Eq. (III-1) becomes,
approximately,

N =N, (2.7)k (I11-3)

When evaluated more accurately the number we have called
2.7 has the value 2.71828----- . It occurs so frequently
that it is called e and it is used as the base for the system of
natural logarithms. The function we seek which obeys Eq.
(I11-3) is written as

N = Nyekt (111-4)
This function is discussed in calculus terms in Appendix
III-1. The lack of understanding of this function may be
one of the greatest shortcomings of the human race.

IV. Properties of the function.

A. General properties

Figure IV-1 shows the general properties of the
function of Eq. (III-4). The value of the function for 2 <0
tends toward zero at long times, and the value for 2 >0
tends to become infinitely large at long times. Between
these extremes is the solution for £ = 0 for which N has the
constant value Ny for all values of ¢. We will first examine
the solutions where &£ > 0.

B. The doubling time
For positive values of k, Eq. (III-4) shows that N
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Fig. I11-3. The slopes of the curves of Fig. ITI-2 at ¢ = 0 are
plotted here as a function of g. The slope has the value
equal to the function (N=1, AN/At=1)ate=2.718....

increases with time, starting with the value N=N, at time
¢ = 0. Let us find the time (¢ = T,) that is required for N to
increase by a factor C from N, to CN,. We use Eq. (I1I-4).

CNO = Noech

Take the natural logarithm of each side of this equation

InC = kT,
V-1)
InC (
Te=%—

One of the most important characteristics of the
exponential function is illustrated in Eq. (IV-1). The time
T, for N to grow by a given factor C remains constant
throughout the growth.

=0
~ %<0
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Fig. IV-1, This figure shows a linear plot of the growth or
decay of N as a function of time for several different values
of the constant k.
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If we wish to find the time for N to grow to twice its
initial value then we let C = 2, and Eq. (IV-1) becomes

n2  0.693...
=5 ="

1v-2)

C. The growth of the exponential function

The constancy of the doubling time T, is a remarkable
feature of the exponential function (Eq. ITI-4). As a result,
the growth of N with time has a particularly simple
behavior. Starting at Ny at time ¢ = 0, N grows to 2N, at
t = T, it continues to grow to 4N, at ¢ = 2T, ; at 3T it has
grown to 8N,, and in n doubling times it has grown to
2PN, . This behavior is illustrated in Table IV-1.

Table I1V-1

The growth of the exponential function

Time
(in units of T,) N

t=0 N=Ny=2°Ng
t=T, =2No=2"Np
t=2T2 =4N0=2 No
t=3T, =8 Ng = 2> Ny
t=10T, = 1024 No = 2% Ng
t=nt2‘ =2nNo

D. The doubling times for various growth rates
Let us rewrite Eq. (IV-2)
_0693... 693 _
k ~ 100k P

69.3 70
~p- (AV-3)

T,

The quantity P is equal to 100k (where & is defined in I1-3)
and is the instantaneous value of the percent growth rate
per unit time, This important relation between the doubling
time and the percentage growth rate is illustrated in Table
IV-2. This relation may be remembered by observing that
the doubling time is given approximately by dividing the
number 70 by the percent growth rate. Equation (IV-3) is
sometimes given as T, = 72/P and Shonle?® says that this

Table 1V-2
Doubling times in years for various annual
growth rates as calculated from Egq. (1-10).

P (per year) T, (years)
1% 69.3
2% 34.6
3% 23.1
4% 17.3
5% 13.9
6% 115
8% 8.66
10% 6.93
15% 462
20% 346

Time units other than years may be used. Thus if P is
the percent growth *“per hour,” T, is the doubling
time in “hours.”
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equation, . . . is the most useful equation in any question
of growth” of which he is aware.

News stories constantly cite growth rates in percent
per year. It is most urgent that we and our students learn to
convert growth rates to doubling times by the simple
mental arithmetic of Eq. (IV-3).

E. Doing exponential calculations in your head.

One of the most important things we must do in
teaching the properties of exponential function is to help
students to develop the skill to do exponential calculations
in their heads. When a news story about growth makes the
observation that the population of the town grew 3% last
year, the student should be able to make a quick mental
calculation to estimate a) the doubling time for this growth
and b) how large a city the town will be if this growth
continues for 50 or 100 years in the future. Once a person
has developed these skills, he or she can immediately
evaluate the impact of a particular growth without having
to use a slide rule or an electronic calculator. At this point
we can specify three valuable mental skills that are easily
developed.

1. The conversion of growth rates into doubling
times. Growths are almost universally described in terms of
percent per unit time but the average reader has no
comprehension of the exponential consequences of a given
growth rate. Equation (IV-3) is the first weapon in our
arsenal of mental arithmetic.

70
percent growth per unit time

Doubling time =

Thus when we read that “the tax revenue increased 8%
above last year’s revenue,” we can say that if this continued
the revenue would double in about nine years (70/8 =~ 9). It
would be a great step forward if we could convince the
media to report growths in terms of doubling times as well
as’in terms of percents.

2. The estimation of long-term overall growth. In IV C
we saw that in n doubling times the quantity N grows from
its initial value Ny to 2nN,. In Appendix III-1 it is shown
that this behavior is described by the equation.

N =N,2¢/T2) (IV-4)

Suppose we wish to estimate how large N will be after some
very large number of doubling times. For instance, let
t =57 T,. From Eq. (IV-4),

N=N0 257

We can estimate the magnitude of 257 in our head by a
very simple method. One should remember that 2'° = 1024
so that it is approximately true that

10 3
21° ~ 10 av5)

Thus we may say that
257 = 210 210 210 2]0 210 27
~10° 10° 10° 10% 103 x 128
~1.3x10'7

This replacement of 210 by 10° allows one to estimate
overall growth in a very simple way.
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Table IV-3
Growth in a lifetime
The right column lists the overall growth (N/Ng)

that would result in 69.3 yr for steady growth at the
annual percentage rates given in the left column.

Percent Growth
annual Factor
growth (N/Ng)
0 20-
1% 2l =2
2% 22=4
3% 2% =8
4% 2% =16
5% 25 =32
6% 2% = 64
7% 27 =128
8% 2% = 256
9% 2% =512
10% 210 = 1024

The error in this estimate can also be estimated.
Because 210 = 1024, our replacement of 2'° by 103 gives a
result that is approximately 2.4 percent low. In estimating
the value of 257 we made this replacement five times so our
estimate (1.3x10'7) is low by 5 x 2.4 = 12 percent. The
actual value of 2°7 is 1.44 x 1017,

3. The estimation of growth in a human lifetime. The
arithmetic of exponential growth becomes particularly
simple when it is calculated for a period of 70 years because
70 is approximately 100 1n 2. This is convenient because
70 years is also approximately one human lifetime in the
industrially developed countries. For t=70 years, the
exponent of 2 in Eq. (IV-4) is (70/T;) which is (100%)
which is the percent annual growth, P (see Eq. IV-3).

Thus in 70 years an annual growth rate of 6% will
produce an overall growth of 2% = 64! (See Table IV-3.)

One of our local newspapers recently quizzed
members of Boulder’s City Council as to what annual rate
of growth of Boulder’s population each council member
felt would be acceptable. The answers ranged from 1% per
year to 5% per year. [ wrote to the City Council to ask if
they realized that if the city’s population grew steadily at a
modest 5% per year then where we now have one
overloaded sewage treatment plant, in one short human
lifetime the growth would make it necessary for us to have
2% = 32 overloaded sewage treatment planis.

These three methods of doing mental arithmetic to
estimate exponential functions should be made a part of
the training of every student we see in our classrooms.

F. Solutions for negative values of %

When % is negative, the quantity N decays from its
initial value Ny toward the ultimate value of zero. Its value
decreases to half its initial value in a time called the
“half-life” T, whose value is the magnitude of the right
side of Eq. (IV-2). Thus in one half-life N decays from N,
to Ny /2. In three half-lives, N decays to No /2> = N, /8, and
in n half-lives it decays to Ng/2%. The amount of decay in
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the first half-life is equal to the sum of all the decays in all
the remaining time.

If one starts at ¢ =0 with N, atoms of a particular
radioactive isotope then the number of atoms remaining
undecayed at a time ¢ is given by Eq. (III-4) with £ <O0.
The magnitude of % is the fraction of the atoms that decay
per unit time, and the half-life T, is

(n 2)
&l

Different radioactive species have different half-lives and
these can range from less than 107® sec to greater than 10°
yr.

When a capacitor C is given a charge @, and then has a
resistor R connected across its two plates at time ¢ = 0 the
charge @ remaining on one plate at any later time £ is given

by

Q= Qoet/RC

where in this case, the k of our standard formula is equal to
-1/RC.

The same mathematical forms are encountered in
describing the absorption of Xrays or gammarays in
varying thickness of absorbers.

G. The semi-logarithmic plot

The rapid growth of N (for £ > 0) and the rapid decay
(for k < 0) are difficult to plot on linear graphs. To get
around these graphical difficulties it is common to plot the
logarithm of N instead of N itself, as a function of time. If
we take the natural logarithm of both sides of Eq. (III-4)

InN=1nN, + kt

This is the equation of a straight line (In N vs t) where
In Ny is the intercept and % is the slope. Such a plot is
called a semi-logarithmic plot and it is most easily made on
“semi-log” graph paper where the marked distances on the
ordinate scale are proportional to the logarithms of
numbers instead of being proportional to the numbers
themselves. The slopes of the straight lines are positive for
k>0 and are negative for k& <0. Figure IV-2 shows a
semi-log plot of growing exponentials (curves A and B have
k > 0) and a decaying exponential (curve C has k <0).

H. The determination of constants from semi-log plots

It is very easy to determine the value of the contant k
from a semi-log plot. For the case of positive k& (Fig. IV-2,
curve A) it is noted that N increases from 5 to 10 in a fime
of 8.5 h. Therefore 8.5 is the doubling time, and the
constant k is 0.693 ... /8.5 = 0.0816 per hour. On curve B
we can see ten doublings from N = 0.50 at ¢ =0 to N = 512
at t=13.0. Therefore the doubling time for this curve is
(13.0)/10=1.30 h, and the constant &k s
(0.693 . ../1.30)=0.533 per hour. In curve C we see a
decrease from the value of 160 to the value 10 in 8 h. This
is a decay by a factor of 2* or through 4 half-lives. The
half-life is 8/4=2.0hand k =-0.693 ... /2.0 =-0.346 per
hour.
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Fig. IV-2. Semi-logarithmic plots of growing exponentials
(curves A and B) and of a decaying exponential (curve C).
The intervals between marks on curves A and B are
doubling times, and between marks on curve C are
half-lives. The units of time are hours.

I. An interesting detail
If & = +0.060 per year, what is the growth in one year?
Before you answer, “‘six percent,” think of Eq. (III-4)

N =Nye0-060 x1 -1 06184N,

Thus a value of & = “+0.060 per year” produces an actual
growth of 6.184% in one year!

If a quantity that is growing exponentially actually
increases by 6.00% in one year, what is the value of £?

1.0600N0 = Noek x1
k= ln 1.0600 = +0.05827

The reason for the apparent discrepancy between the value
of k and the growth in one year is illustrated in Fig. IV-3.
The upper curve is a plot of the exponential function
N =Nge0-060t while the lower curve is the straight line
N=Ny (1+0,060f) which is tangent to the exponential
curve at ¢ =0. The slope of the straight line is constant so
that it describes an increase in N from N, to 1.060N, in
the time interval from ¢=0 to ¢t = 1. From Eq. (II-2) the
slope AN/At of the exponential curve is EN. Thus the slope
of the exponential curve must increase as N increases. This
is responsible for the rise of the exponential curve above
the straight line even though both curves have the same
slope at {=0. The quantity % is not the change in N in a
finite interval of time but is the instantaneous value of the
fractional rate of change of N.

In many instances, such as those involving population
growth, the data are not sufficiently precise to allow a
meaningful differentiation between the two values (k and
the actual annual fractional growth) and in these cases, if a
population grows 6% per year we will describe its growth
by saying k& = +0.060.

V. The power of powers of two

The story of the exponential function can best be told
as the story of powers of two., The rapidity with which
powers of two can grow to overwhelming numbers is
fascinating, frightening, and largely unappreciated by the
average person. Let us illustrate by some examples.

A. The king and the mathematician. The story is told of the
court mathematician who invented the game of chess for
his patron the king. The game so pleased the king that he
offered to reward the mathematician for the invention. The
mathematician said, “Give me one grain of wheat (2°) on
the first square of the chessboard, two grains (2') on the
second square, four grains (22) on the third square, eight
grains (2%) on the fourth square, etc., doubling the number

i 1061814 N, )

{06000 N,

Fig. IV-3. The upper line is the exponential
- curve for k = + 0.06 and the lower line is the
straight line N=Ng (1 +0.060¢). The
stra(i)ght line is tangent to the curve at time
1 t=0.
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Table V-1

Wheat on the Chessboard
(The payment of a modest debt)
Number of the

Grains of wheat Total grains of

square on the square wheat on the
board thus far
1 1=2° 1=21-1
2 2=2! 3=22-1
3 4=22 7=2%-1
4 8=23 15=2%-1
5 16=2% 31=25-1
6 32 =25 63=2%-1
n 2n-1 2n -1
64 263 264 -

of grains on each succeeding square until all the squares
have been used.” The king thought that the mathematician
was foolish to ask for such an apparently trivial reward. But
the king changed his mind when he started counting out the
grains of wheat. Table V-1 shows the number of grains
required on each square. The plan calls for 263 grains to be
placed on the 64th square! When this has been done, there
will be (2% -1) grains of wheat “on the chessboard.” Let
us convert 2°% to powers of 10 by the approximate
methods of Sect. IV, E,2.

26% = 10% x 10° x 10% x 10° x 10® x 10® x 2°
=16x 10'8

(The actual value is 18.45x 10'3)

Since common grains of wheat have a mass of 3.4 g
per hundred, the total mass of wheat needed to repay the
debt is 6.27 x 10'* kg which is approximately 500 times
the current annual world-wide harvest of wheat. This
apparently modest method of rewarding the mathematician
for inventing the game of chess would require an amount of
wheat which is probably larger than the total amount of
wheat that has been harvested in the entire history of the
earth!

Another very important aspect of repeated doublings
is seen in Table V-1.The number of grains placed on any
square is one grain larger than the total of all of the grains
on all of the preceeding squares.

B. Folding paper in half.

The sheets of paper on which The Physics Teacher is
printed are 5.7x 10°% cm. If one folded such a sheet of
paper in half, the thickness of the two halves would add to
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2x5.7x 107 cm. If one folds the paper in half again the
four layers of paper will have a total thickness of
4x5.7x103 cm. When the sheet has been folded five
times it will have the thickness of (25 = 32) sheets which is
the thickness of the normal issue of The Physics Teacher
minus the front and back covers. (The normal issue has 64
numbered pages on 32 turning pages.) How thick would the
sheet from The Physics Teacher be when it has been folded
a mere fifty times? The answer is both simple and amazing,

T=2%°x57x103%cm
=6.4x10"%cm
=6.4x10"km

This is 0.43 of the distance from the earth to the sun!
With these two examples we can begin to appreciate
the awesome power of powers of two.

C. The growth of electric power generating capacity in the
United States. The electric generating capacity in the
United States has doubled approximately every ten years
for a century! Advertisements suggest that it is expected
that the U.S. generating capacity will double again in the
next 10 to 12 years, We can draw several conclusions from
this.
1. The ten-year doubling time corresponds to an annual
growth rate of 7% [see Eq. (IV-3)].
2. The growth of the number of kilowatts of electrical
generating capacity in the United States during the
past century can be approximated by the equation

KW = Kwqe0-070t =KW02t/10

where ¢ is measured in years.

3. In the next doubling time of 10 to 12 years the U.S.
will consume more electrical energy than has been
consumed heretofore in the entire previous history of
the electric generating industry in the United States
(Remember the grains of wheat on the chessboard,
and Table V-1.).

4, If this 7% annual growth were to continue for the
next 70 years the electrical generating capacity of the
U.S. would grow by a factor of 27 = 128 and if it
were to continue until the nation’s {ricentennial, the
generating capacity would have to grow by a factor of
2'0 = 1024! If all of this power is to be generated by
the use of fossil fuels, then where we have one coal
mine today we would have to have 1024 coal mines
century from now. If all of this power is to be
generated in steam plants (fossil fuels or nuclear)
having the same thermodynamic efficiency as today’s
generating plants, then for every megawatt of heat
that is dumped into the environment today there will
be a thousand megawatts dumped into the
environment one century from now!

D. Observations. These three examples permit us to make
three important points about exponential growth, and these
lead us to a compelling conclusion.
1. Repeated doubling leads to astronomical numbers.
2. Even modest annual growths can, in a relatively few
years, lead to incredible overall growth.
3. An understanding of the exponential function has a
great importance in the real world.
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The compelling conclusion to which we are led is that
nothing can grow exponentially for very long. In particular,
the current large annual consumption of resources cannot
grow through many more doubling times.

In spite of this obvious and simple conclusion, we find
that “‘experts” would have us believe that the current
energy problem is merely a minor transient on a curve of
steady growth of the rate of consumption of energy to
which there will be no end. Consider these words which are
taken from a recent full-page full-color advertisement in a
national news magazine!* (The nonsentences are in the
original)

“America depends on electricity. Qur need for
electricity actually doubles about every 10 or 12
years. Can we keep meeting this need year after year?
it depends on what we do in the next few years. We
have the technology to make all the electricity we
need. .. And now some of our fuels are in short
supply. We are going to have to rely more and more
on our resources that are in ample supply. Coal and
nuclear fuel for example, (sic) We are going to have to
build more nuclear power plants. And new, more
efficient coal-burning plants, (sic). But we have to use
this electricity and all our resources wisely (emphasis
is mine). Because America depends too much on
electricity to ever run out.” (sic)

The closing line is a Madison Avenue masterpiece. It
establishes in the reader’s mind the curious and illogical
conclusion:
Because America depends so much on electricity, we
will never run out!

With this example of the growth of the electric power
industry in the United States, we suddenly see that the
exponential function has enormous importance in the real
world. With this example, our discussion makes the
transition from a review of abstract arithmetic to the
discussion of the exponential problems of the world in
which we live. We can begin to see that simple growth can
have alarming consequences. We can begin to suspect that
the “energy crisis”’ was predictable, and we can see that no
glib solutions can cover up the grim and fascinating realities
of the exponential function in our every day life.

As physics teachers we usually introduce our students
to the exponential function when we discuss the RC circuit
where

4Q __ L
dt (RC )Q

or when we discuss radioactive decay, where

I suspect that it is rare for a physics teacher to go on from
these introductions and say whenever we have

(I11-1)
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we have exponential growth. I suspect that few teachers
ever show their students how many important economic
and social phenomena are described (at least
approximately) by Eq. (II-2) and which consequently
exhibit exponential growth. I suspect that few teachers of
physics point out to their students the many important
applications of exponential growth in the real world, where
its importance is so great that it can be said that

The greatest shortcoming of the human race
is man’s inability to understand
the exponential function.

In succeeding issues of The Physics Teacher we will
examine the role of the exponential function in the world
in which we live.
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Appendix HI-1

Equation II-2 may be written

aN - (la)
dt ’
The solution is of the form
N =Ny bt (2a)
where a and b are constants. The time derivative of N is
%\—L b(Ina) Ny abt
(3a)
=b(lna)N
This satisfies Eq. (1a) provided
k=blna. (4a)

We must choose values of ¢ and b that satisfy Eq. (4a)
where & is the instantaneous value of the fractional change
in N per unit time.
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If we choose to let ¢ = ¢ where

-hm (1+—)x 2.718..... (5a)

then k = bin e = b and the solution to Eq. (1a) is

N = Njekt (6a)
It is convenient to let @ = 2 in which case & = k/In 2. This is
recognized as the reciprocal of the doubling time

-1
T,

and then the solution of Eq. (1a) is
(Ta)
N= No 2 /T2

It is also convenient to let a=10 in which case

b="k/in 10 = £/2.303 = 0.4343k. Now the solution of Eq.
(1a) is

N=No 100.4343 kt (83)

Part II of this article will appear in a future issue.
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Define half-life.
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