the kinds of protein turnover is diminished in the brain of Alzheimer's disease because much of the protein is aggregated in NFT-amyloid-complexes. Such an accumulation of NFT-amyloid-complexes would be consistent with shrinkage clearance resulting from the blocking of the brain-clearance receptor. The level of the brain-clearance inhibitory-protease complex is more likely to reflect the state of the clearance receptor than is the level of the first step, since the brain-clearance receptor binds only to the complex.

To our knowledge, the levels of brain-protein complexes containing the brain-clearance receptor have not been measured in Alzheimer's disease. The question whether widespread diminished clearance of the brain-protein complexes serves as a result of amyloid-finding activity could have any effect on protein turnover. Does the pronasin presumably insufficiently inhibited in the complex the brain-clearance receptor? The 'inhibitory' complex of the brain-amyloid complex is based on vide experiments showing the similarity of the complexes in sodium-diluted buffer and in vivo-experiments. However, at present is not known whether the active pronasin can be extracted from the complexes in vivo. This could happen, for example, if the complexes were cleared by a first protease, remanaging the activity of the pronasin in the complex. Alternatively, the binding of brain-amyloid to the brain-clearance receptor may not directly affect protein activity. Hence, it should be emphasized that the central issue of whether brain-proteins interact with a receptor to the brain-clearance of the brain involves to be resolved.

B. Schmider and V. Novotny are currently in motion that plaque-globin does not use any protein. However, various authors to this rule have been reported. There is some presence for the synthesis of amyloid-precursor proteins in initiated preparations of human protein. Whether the amount oligomerized represents a substantial proportion of the amyloid-precursor protein or is complexes relative to the amount of protein synthesized in melanocytes remains to be determined.

BETTINA A. YOUNG, M.D., Ph.D., D. M. MILLIKEN, M.D., M. A.

Breitbart, May 2015

reaction is not in human plasma. Proc Nat Acad Sci USA 1980;77:201-203.

reaction is not in human plasma. Proc Nat Acad Sci USA 1980;77:201-203.

reaction is not in human plasma. Proc Nat Acad Sci USA 1980;77:201-203.

reaction is not in human plasma. Proc Nat Acad Sci USA 1980;77:201-203.

POLYMORPHISM

To the Editor: For a recent review (Nov, 21 issue), Dr. Dalakas expressed a fear of polymorphism that we discussed on one that was "highly" expressed by T cells expressing the y-encoded, which have cyto

downloaded and distributed elements y-encoded (polymerase polymerase-complex: class 1 antigen). We wish to emphasize that the three

collaboration of MHC-I antigens and B cells does not exist. We imply that the antigen recognition may exist as the recognition of B cells. Although the absence of y-encoded (polymerase polymerase-complex: class 1 antigen) is evident, it is not clear that it is involved in the recognition of MHC-I y-encoded by T cells.

D-800 Munich 70, Germany

REINHARD ANDREWS, M.D.

University of Munich

AMANDA D. ZAVEL, M.D.

University of Munich

MAY 2015

1. Dusky, J.P., Polymorphisms, and resistance to melanoma.

2. Bierich, J.H. and Eng, E.

3. Bierich, J.H., Eng, E.

4. Bierich, J.H., Eng, E.

5. Bierich, J.H., Eng, E.

6. Bierich, J.H., Eng, E.

7. Bierich, J.H., Eng, E.

8. Bierich, J.H., Eng, E.

10. Bierich, J.H., Eng, E.

LEAD LEVELS IN PREINDUSTRIAL HUMANS

To the Editor: We examine the natural blood lead concentrations of humans in about 0.05 mg per liter (0.05 mg per deciliter). This estimate is 50 to 80 percent lower than the lowest reported blood lead concentrations of contemporary humans in remote regions of the world (0.05 mg per liter) and northern 0.05 mg per liter). Hematopoiesis, which is more than 90% of lead, is 0.05 mg per liter (0.05 mg per deciliter). This estimate for the natural blood lead concentration is determined by the amount of lead in the body (0.05 mg per liter) divided by the amount of lead in the body (0.05 mg per liter). For example, in the United States, the average adult man has a blood lead concentration of about 0.05 mg per liter. The average adult woman has a blood lead concentration of about 0.05 mg per liter. The average child has a blood lead concentration of about 0.05 mg per liter.
myelodysplasia and leukemia after treatment of aplastic anemia with G-CSF

To the editor: Several clinical trials using recombinant human granulocyte-macrophage colony-stimulating factor (G-CSF) have demonstrated that patients with severe aplastic anemia are responsive to this agent and that transplant-related mortality can be decreased in the majority of patient without toxicity. However, little is known about the long-term effects and incidence of G-CSF in severe aplastic anemia. We treated three children with severe aplastic anemia in whom myelo- dysplasia with monosomy 7 developed (Table 1). In view of this,